Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present associative and causal views of differential privacy. Under the associative view, the possibility of dependencies between data points precludes a simple statement of differential privacy's guarantee as conditioning upon a single changed data point. However, we show that a simple characterization of differential privacy as limiting the effect of a single data point does exist under the causal view, without independence assumptions about data points. We believe this characterization resolves disagreement and confusion in prior work about the consequences of differential privacy. The associative view needing assumptions boils down to the contrapositive of the maxim that correlation doesn’t imply causation: differential privacy ensuring a lack of (strong) causation does not imply a lack of (strong) association. Our characterization also opens up the possibility of applying results from statistics, experimental design, and science about causation while studying differential privacy.more » « less
-
We study the phenomenon of bias amplification in classifiers, wherein a machine learning model learns to predict classes with a greater disparity than the underlying ground truth. We demonstrate that bias amplification can arise via inductive bias in gradient descent methods resulting in overestimation of importance of moderately-predictive weak'' features if insufficient training data is available. This overestimation gives rise to feature-wise bias amplification -- a previously unreported form of bias that can be traced back to the features of a trained model. Through analysis and experiments, we show that the while some bias cannot be mitigated without sacrificing accuracy, feature-wise bias amplification can be mitigated through targeted feature selection. We present two new feature selection algorithms for mitigating bias amplification in linear models, and show how they can be adapted to convolutional neural networks efficiently. Our experiments on synthetic and real data demonstrate that these algorithms consistently lead to reduced bias without harming accuracy, in some cases eliminating predictive bias altogether while providing modest gains in accuracy.more » « less
-
We study the problem of explaining a rich class of behavioral properties of deep neural networks. Distinctively, our influence-directed explanations approach this problem by peering inside the network to identify neurons with high influence on a quantity and distribution of interest, using an axiomatically-justified influence measure, and then providing an interpretation for the concepts these neurons represent. We evaluate our approach by demonstrating a number of its unique capabilities on convolutional neural networks trained on ImageNet. Our evaluation demonstrates that influence-directed explanations (1) identify influential concepts that generalize across instances, (2) can be used to extract the “essence” of what the network learned about a class, and (3) isolate individual features the network uses to make decisions and distinguish related classes.more » « less
An official website of the United States government

Full Text Available